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A Comparison of Trajectory Determination Approaches for
Small UAVs

Dr. Murray B. Anderson* and Dr. Juan L. Lopez†

Jacobs Sverdrup/TEAS Group, Eglin Air Force Base, FL, 32542

Mr. Johnny H. Evers‡

Munitions Directorate, Air Force Research Laboratory, Eglin Air Force Base, FL, 32542

In considering the problem of small unmanned aerial vehicle (SUAV) surveillance
mission in a target rich environment, it is desirable to follow a trajectory path that
maximizes targets coverage and observation time, while minimizing airframe maneuvering.
Motivated by this requirement, this paper investigates the merits of multiple vehicle
trajectory path schemes. Genetic Algorithms (GAs) and local optimum techniques are
compared to a more conventional defined-path approach. The authors also introduce a
polygon boundary reflection algorithm (PBRA) and investigate its merits. Given a scenario
containing multiple targets of unknown positions, the GA optimization approach determines
the waypoints defining a path that best satisfies three goals: 1) maximize the number of
targets seen, 2) maximize the average observation time for each target, and 3) minimize the
SUAV acceleration history. Were the target locations known apriori, this problem could
decompose into a variant of the much-studied traveling salesman problem (TSP). The
complication of not knowing the actual target locations apriori means that the optimization
tool must find waypoints that best satisfy the multiple objectives with little actual knowledge
at initiation. Given this additional complexity and the fact that there are multiple objectives
that must be maximized, a GA approach was investigated because it offers the ability to
rigorously search for the optimum waypoint locations while simultaneously examining
performance against multiple objectives. The GA software used in the analysis is
IMPROVE (Implicit Multi-objective Parameter Optimization via Evolution)1. Comparison
results of the GA based approaches, pareto and non-pareto, were investigated and compared
with the simple PBRA and the popular Serpentine path approach. The analysis shows the
GA optimization benefits and performance tradeoffs for all the path planning approaches
that were studied.

Nomenclature
 = for all
 = exists
am = acceleration of the SUAV
Ai = member A’s performance in goal i
Bi = member B’s performance in goal i
i = index reference for goals
tf = final time
t0 = Initial (start) time
Δti = average time ith object is observed

* Director, Air Armament Technology Support Department, 308 West D Avenue, Bldg 260, Associate Fellow.
†Chief Scientist, 308 West D Avenue, Bldg 260, Senior Member.
‡Senior Researcher, AFRL/MNG, Senior Member.
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I. Introduction
he analysis of trajectories for SUAVs has recently been the subject of optimization research. As the utility

of these vehicles grows, techniques need to be developed and evaluated that can offer insight into how best to
employ these vehicles to accomplish their complex missions. A recent application is Area Dominance in which a
UAV or a munition loiters for a relatively long time over an area and searches for potential targets. While searching
the UAV must also avoid obstacles in its path and be capable of responding to a dynamic environment. The path
planning objective is to determine the most efficient trajectory for maximum efficiency/utility. Path planning
optimization and obstacle avoidance have been areas of research using a variety of techniques based on optimal
control. This interest is motivated by the successful application of UAVs in recent conflicts and the diversified role
that UAVs can take in future conflicts. Receding time horizon (RTH) 2-3 has become popular for control of UAVs,
particularly in determining the path for obstacle avoidance. RTH is advantageous because the computational
resources needed are low and it can respond to a dynamic environment. Optimization of the complex cost function
using mixed integer linear programming was discussed for the obstacle avoidance problem, including target
estimation uncertainties in the model4. Investigations using a receding horizon control strategy to enable a UAV to
fly autonomously in a complex urban environment have been presented providing a path planning approach by
selecting a series of locally–optimal waypoints ahead of the vehicle5. Dynamic programming6, iterative search
methods 7, and random methods based on genetic algorithms8 (GAs) have been investigated.

This research paper compares different methods to develop navigation waypoints that yield optimal performance
in three primary optimization goals: 1) maximize the number of targets seen, 2) maximize the average observation
time for each target, and 3) minimize the SUAV acceleration history for endurance. GA results are compared to
simpler and more popular methods for the specified cost function. For this research the GA code IMPROVE1,
originally developed to support air data estimation9, was used. This code has recently been used for aerodynamic
data extraction and airframe design optimization. Inputs to the GA software are user-defined parameter bounds
(waypoints) and their resolution, as well as a description of the cost function (the three goals). For this application a
constraint was placed on the maximum SUAV acceleration (2G’s)so the scenario would be representative of a
typical SUAV maneuver capability. This constraint, along with the minimization goal for the acceleration history,
was implemented as a means to conserve fuel.

The GA was run in two primary modes: non-pareto and pareto using the same three goals. Searches using a
pareto optimality approach operate on multiple goals/objectives simultaneously, and “winners” must outperform
their competitors in all goal areas in order to survive the selection process. This rigid selection process typically
means that a pareto-GA will converge less quickly than a non-pareto-GA, so one of the goals of this research was to
run pareto versus non-pareto algorithms for a fixed number of generations (200) to determine which approach might
be best suited for path planning.

It is assumed that a passive imaging sensor of specified field-of-view (FOV) and detection range gathers imagery
while the SUAV cruises the GA-determined path within a specified time horizon (2400 seconds). The GA-directed
search metrics are histograms of targets observed and the average time observing each specific target. The results
using the GA-determined path are compared to a simpler, easy to implement algorithm, the PBRA approach. The
PBRA consists of defining a polygon-shaped area containing the N-targets, and performing random path change
reflection at the boundaries within the airframe maneuver constraint. Basically, the SUAV flies straight until
approaching a boundary, then changes course in a random fashion within limits, then continues flying straight until
the next polygon boundary is approached, and the process continues. The PBRA and the GA models are both
capable of including exclusion zones inside the search area. For simplicity, a constant velocity SUAV is assumed,
however the algorithm could also control the throttle within specified speed limits to improve the performance
metrics. Results of simulations are displayed showing the performance of the different techniques using a
synthetically generated environment. The popular Serpentine Search approach is also investigated for the given
target scenario. A single SUAV is assumed; however, data link communication in a formation of UAVs is feasible
and this capability could improve path planning and enhance target search and detect. This is a field of future
research for path planning with the numerous vehicles exchanging position and path information.

II. Genetic Algorithms
Genetic algorithms are encompassed within the broader computer science field known as artificial intelligence.

Genetic algorithms are so called because they attempt to use the supposition of evolution as a basic mechanism for
improvement (i.e. learning/survival-of-the-fittest) in solving a problem. All genetic algorithm work stems from the
pioneering efforts of John Holland10, whose classic book “Adaptation in Natural and Artificial Systems” set the 

T
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foundation for population-based adaptive optimizers. Following the terminology of true genetics researchers, the
computational genetic algorithms developed by Holland (and his students) encode potential solutions into
chromosome-like structures, then allowing these structures to compete, reproduce, and mutate to produce
(hopefully) better and better solutions over time. GAs have been increasingly used in optimization studies over the
past decade, and have more recently been used in multi-disciplinary optimization. There should be an emphasis on
improvement rather than optimization in a multi-disciplinary context, simply because for complex problems it is not
possible to prove that you have reached an optimum. In the preface to the latest reprint of his book, Holland himself
says that “about theonly change I would make would be to put more emphasis on improvement and less on
optimization.”Certainly no analytic determination of an optimum can be made for a sufficiently non-linear multi-
variable problem, so consistent with Holland’s observations, the emphasis in this research is on using GAs as an
improvement tool.

In a strict biological sense, genetic algorithms cannot correctly be called an evolutionary model, though it is
quite popular in literature to call them evolutionary because the algorithm attempts to adapt its pre-existing genes to
perform best in the current environment. The algorithm does not create new genes if the current ones do not suffice,
and hence the supposition of evolution does not strictly apply to the genetic algorithm approach invented by Holland
and used in this research. Adaptation more correctly describes the process by which genetic algorithms find good
solutions to their environment.

Many facets control the way that a genetic algorithm works. A potential solution first has to be encoded, along
with all the other potential solutions that form a generation. This population is then fed one at a time to the objective
function so that a measure of the performance of each member of the population can be ascertained. The better
performers then have a higher probability of surviving to reproduce the next generation. Mating between survivors
is the mechanism by which new populations are formed. Mutation is also allowed to occur and helps preserve
genetic diversity. Over time, as generations build upon the successes of previous generations, the performance of
the entire population increases as the algorithm “learns” what allele values produce good answers.  Poor performers 
die off (lower reproduction rate) and over many generations the best performers within a given population will
hopefully provide suitable performance through the objective function. Many researchers tout genetic algorithms as
“global” optimizers, and that is true because of mutation and the general probabilistic non-gradient nature of GAs,
but in engineering applications you typically want good answers (answers that will suffice) as fast as you can get
them.  Whether the “answer” is the absolute global optimum or not is less of a concern than whether youwere able
to get a good answer in the time allotted by management circumstances. Besides, for complicated problems there is
no analytical way to determine the global optimum, so arguments over whether you have the true optimum are
academic.

Pareto GAs11-13 differ from generational GAs in that they operate on multiple goals or objectives simultaneously
rather than having one “fitness” function.  The goals are optimized individually to determine parameter sets that 
work well for each goal. Through the mating of good parameter sets for each individual goal, a family of parameter
sets which work well across the spectrum of goals is obtained. This family of solutions is called the pareto optimal
(p-optimal) set for the multi-objective/multi-goal problem. The operation of the pareto scheme in the genetic
algorithm software is by domination. One goal set, defined as the collection of individual goal performances based
on one parameter set, must clearly dominate another if the parameter set is to survive. Goal set A dominates set B if
the following two statements are true:

i (Ai Bi) and i (Ai > Bi )

When two members of the population are chosen for the tournament selection procedure, the domination rules
are examined to see whether one member dominates the other. The clear winner is retained for the next generation.
If there is no clear winner, a situation called nondomination, the winner is selected at random for survival.

One of the first successful implementations of a pareto strategy was performed by Schaffer. In his dissertation,
Schaffer formed subpopulations for each goal area. The members of the subpopulations would compete for survival
only within the subpopulation, but mating was allowed between subpopulations. One of the weaknesses of this
approach, which was noted by Schaffer and modified in his later work14,15, was that the subpopulations would
essentially form niches of high fitness, but there would be few members of the subpopulations that work well in all
the goal areas. Producing niches of high fitness is counterproductive in true multi-objective optimization. The
IMPROVE code uses a single population, minimizing the chance of niches. But if niches are desired, the
IMPROVE code will allow niches to form if elitism is selected in conjunction with the pareto algorithm. Elitism
will preserve the best performer(s) in each niche.
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III. Problem Setup
For simplicity, the SUAV is modeled as a 2-DOF point mass with a constant velocity of 100 ft/sec and a

maximum turning capability of 2G’s.The seeker is assumed to have a viewing range of 3000 feet with a ± 15
degree FOV. The target area is a 20,000 foot by 20,000 foot square, with 20 randomly placed targets (the same
configuration was used for each case –see Figure 1). The SUAV had 25 navigation waypoints to fly through,
though the methodology to fly through
the points varied depending upon the
case investigated. As the SUAV flies
through the waypoints, statistics such as
target number and time within the seeker
FOV are captured. As the SUAV turns,
the integral of the acceleration squared is
also calculated to provide information
about the energy expended during all
turns. The total time of flight was set at
2400 seconds (40 minutes), so once each
waypoint has been reached the vehicle
can begin revisiting the waypoints in
accordance with the particular algorithm
being employed to navigate through the
waypoints. It is understood that the
results of this research cannot be applied
exactly to another unique target set since
the waypoints determined in this study
only apply to the 20 targets shown in
Figure 1, but that was not the goal of this
research. Rather, the investigation of
possible trajectory optimization schemes
using a GA was the focus of the
research. Another goal was to see what
“features” could be extracted from the resulting trajectories that might help guide future research.  Since the GA has
no preconceived ideas of what a trajectory should look like, any inherent bias on the part of the authors is removed
from the problem. This unbiased approach to examining problems makes GAs extremely useful for optimization
studies, and this is what makes GAs so unique. Unlike other optimization approaches, a GA does not start out with
an initial “guess” or starting solution.

Optimization Cost Function:
As described in the Introduction, the multi-objective optimization goals for the GA are: 1) maximize number of

targets seen,
1

N

i

Nt Ni


 ; 2) maximize the average observation time for each object: ti , while 3) minimizing the

value of acceleration squared over the total time of flight between waypoints:
0

2min
ft

m
t

a dt

Case 1: Pareto GA, GA-Determined Waypoints and Path
For this run the GA had 50 independent variables to define (the 25 waypoints x and y coordinates of each

waypoint). The coordinates were numbered 1-25 and the vehicle flew these waypoints in order, so depending upon
the values of each x and y coordinate, the GA had the flexibility of moving these waypoints around to lengthen or
shorten particular legs, or, through the location of these waypoints since they are flown in order, to determine the
best direction of travel through particular portions of the target area. This is an important distinction that separates
this optimization problem from the standard traveling salesman problem. In the TSP, the usual optimization goal is
to minimize distance traveled while visiting each waypoint. For the current research, the direction of travel during
each leg can the most important parameter in determining whether a target is seen and for how long. When the

Figure 1. Target Placement for All Runs
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SUAV has visited all waypoints, it returns to waypoint 1 and begins revisiting the waypoints, eventually terminating
when the maximum time of flight has been reached.

Each x and y coordinate could vary between 0 and 20,000 feet, with a resolution of 200 feet. Each x and y
coordinate, therefore, requires 7 bits for a total of 350 bits for the entire problem. These 350 bits represent 2350

(2.29 X 10105) possible solutions using a GA with a binary alphabet representation. The pareto GA treats each goal
as separate and of equal importance. During tournament selection, only solutions that are clearly better in each goal
are guaranteed to win the tournament. For this run, an elitism strategy with creep mutation at a 5% rate was used in
conjunction with a 90% crossover rate and 0.1% random mutation rate. The population size was set to 1000
members to ensure good genetic diversity, and the maximum number of generations was set to 200. These 200,000
trajectories required approximately 2 ½ days to run on a 1.7GHz Windows XP computer. All other GA runs in this
research used the same population size, creep rate, crossover rate, and mutation rate. Each GA run required the
same computer run time.

Case 2: Non-Pareto GA, GA-Determined Waypoints and Path
For this case, automatic fitness scaling was used on each goal and the fitness scaling was based upon the “best” 

output in each goal.  For example, if the “best” performer for a generation saw the targets for an average of 15
seconds, then each member of the population would be scaled so that performance in this goal is normalized and
ranged between 0 and 1. The same process was used for the other two goals, and then the sum of these three
normalized goals was used in the tournament selection process to determine the “winners”.As before, the GA setup
was identical to Case 1 except for the fact that this was a non-pareto run. The GA still had to determine
performance in three goal areas based upon 50 input variables, and still had to determine the optimal location of
waypoints and the resulting path when flying through the waypoints 1-25 in that order.

Case 3: Non-Pareto GA, GA-Determined Waypoints, Waypoint Visitation Based upon Nearest Neighbor
For this case, the GA setup was identical to Case 2; however, the path determination algorithm was changed so

that the waypoints were visited based upon “nearest neighbor.” In this case, the GA was not responsible for
optimizing the path, but merely the waypoints. The objective of this case was to determine the relative significance
of allowing the GA to determine the path as was done in Cases 1 and 2.  The “nearest neighbor” approach is very 
simple. First, the vehicle calculates the nearest unvisited waypoint and heads toward that waypoint. Once that
waypoint is reached, the waypoint is logged as “visited” and the SUAV heads toward the next nearest unvisited 
waypoint. This process continues until all waypoints have been visited. When all the waypoints have been visited,
the algorithm resets all the waypoints as “unvisited” and begins again.  Termination occurs when the maximum time 
of flight has been reached.

Case 4: Comparison Case, Non-GA, Standard Polygon Boundary Reflection Algorithm (PBRA)
The PBRA is a simple approach to searching a target area. The SUAV is started at a coordinates (0,0) with a

random heading. The vehicle flies along a straight line until it reaches a boundary defined by the 20,000 foot by
20,000 foot square search area. The angle of incidence to this boundary, coupled with a random amount of variation
so that the reflection is not an exact mirror of the angle of incidence, is used to determine the reflection angle that
will send the SUAV back into the target area. The algorithm continues until the maximum time of flight is reached.
Statistics are kept as in the other cases, documenting which targets are seen and for how long. The PBRA ran in
seconds on a 1.7 GHz Windows XP computer.

Case 5: Comparison Case, Non-GA, Point-to-Point Local Optimum Search with Fixed Length Legs
This second comparison case uses fixed time-of-flight heading variations from a starting point of (0,0) with a

heading of 0 degrees. Each of the 25 flight legs is 96 seconds long for a total time of flight of 2400 seconds as in
the other cases.  From the starting point, the “local optimum” heading is found by allowing the SUAV to look along
flight paths +/- 180 degrees from it’s current headingand position. The heading, and resulting path, that produces
the most time spent looking at targets while minimizing the required turn from the current heading is the “local 
optimum” heading, and the vehicle flies along this heading until it reaches the end of this flight leg.  At the end of 
the flight leg, another look +/- 180 degrees will yield another “local optimum” heading, but this time the targets 
must be targets that have not been seen before. This process (fly-look-fly) is continued until all targets have been
seen, whereupon the process begins anew. The fly-look-fly process is continued until all 25 legs of the mission have
been flown. As with the other cases, statistics in all three goal areas are captured for comparison purposes. The fly-
look-fly process has an inherent advantage over the other methods, namely, the optimum headings are derived from
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knowing what targets will be seen and for how long if a particular heading is selected. This particular algorithm
took several minutes to run on a 1.7 GHz Windows XP computer.

Case 6: Comparison Case, Non-GA, Point-to-Point Local Optimum Search with Variable Length Legs
This comparison case is very similar to Case 5, but in this case the length of the legs is determined through

iteration. The algorithm, for all flight paths +/- 180 degrees from its current heading and position, increments time
flown in any given direction to determine whether it would be beneficial to lengthen each potential leg. Benefit, in
this case, is determined by whether time spent looking at targets increases the longer the SUAV flies in a particular
direction. When the algorithm determines that there is no additional benefit to continue on the current heading, the
leg terminates and the algorithm begins searching for the next direction/leg-length to fly. Since some legs will likely
be shorter than the prescribed 96 seconds used in Case 5, the number of legs is not specified apriori. Rather, flight is
simply terminated at 2400 seconds. This particular algorithm took several minutes to run on a 1.7 GHz Windows XP
computer.

Case 7: Comparison Case, Non-GA, Conventional Serpentine Path Search
This case was included because it is very typical of the types of search path algorithms that have been used over

the years. The algorithm is very simple; the SUAV starts at the south end of the search area and flies an appropriate
time (~172 seconds for this target area) to traverse the search area, then turns 180 degrees and flies back across the
search area, one seeker FOV width (no overlap) north from the previous scan area. This process is continued for
2400 seconds. This particular algorithm took only a few seconds to run on a 1.7 GHz Windows XP computer.

IV. Results

Case 1: Pareto GA, GA-Determined Waypoints and Path
Case 1, as a pareto GA case, has multiple solutions that map a pareto-optimal front as the solution progresses.

For visualization purposes, Figure 2 shows a few selected generations (0, 100, and 200). Each member of the
population has its own unique
performance in each goal, and by
generation 200 the survivors have
established a robust set of possible
solutions from which to choose. From
generation 100 to generation 200, it is
obvious that the GA found consistently
better solutions in terms of number of
targets seen and the average time those
targets were seen, though at the
expense of having to increase the
amount of turning required to do so.
In generation 100, nearly half the
population saw 18 or fewer targets for
less than 30 seconds. By generation
200, two-thirds of the population saw
all 20 targets for more than 30
seconds. For illustration purposes, one
of these generation 200 trajectories
will be examined in more detail.

Figure 3 shows the trajectory for
member 103. The dark/wide line is the
vehicle path and the light/thin lines
represent the field of view seen by the
seeker. As this figure shows, each target was definitely seen for some period of time, and the trajectory contains
many sharp turns to enable repeated re-looks of some of the targets. The 20 targets were seen an average of 52.77
seconds with an acceleration goal value of 280.4934 G2·sec. The entire time of flight was used to fly to each of the
25 waypoints, so no waypoints were revisited.

Figure 2. Pareto GA Convergence



American Institute of Aeronautics and Astronautics
7

Many other similar trajectories
were produced by other members of
population 200. For example, member
352 saw all 20 targets an average of
48.2882 seconds with an acceleration
goal value of 249.076 G2·sec –a 11%
energy savings over Member 103 but
at a sacrifice of roughly 4.5 seconds of
average target viewing time. The
pareto GA gives the user a wide
variety of solutions with various
performance in each goal so that the
user can determine which solution is
more desirable.

Figure 4 shows the statistical
breakdown of the amount of time each
target was seen. Most targets were
seen more than 30 seconds, but there
were a couple of targets that were seen
less than 1 second, namely targets 8
and 19. In general though, this
algorithm produced good results and
the GA-determined waypoints
provided good coverage of the
majority of the targets.

Case 2: Non-Pareto GA, GA-
Determined Waypoints and Path

The non-pareto GA run determines
a “best” member of the population by 
measuring its performance against
every other member in each goal
simultaneously through auto-scaling of
each goal. Figure 5 shows the
trajectory of the “best” member from 
generation 200. As this figure shows,
the GA-determined waypoints and
path provided full coverage of all 20
targets. These 20 targets were seen an
average of 53.357 seconds with an
acceleration goal value of 175.1778
G2·sec. This represents a savings of
over 40% on the acceleration goal
while at the same time increasing the
average viewing time of the targets by
slight more than 1 second. The pareto-
GA has a very strict selection process
(i.e. competing solutions must be
better in all three goal areas
simultaneous in order to win the selection process), and this process definitely slows convergence of the algorithm.
The non-pareto GA is not encumbered by this approach, so within 200 generations the non-pareto GA has a distinct
advantage.

Another interesting point is that unlike the pareto-GA case, the SUAV in this non-pareto case revisits the first
three waypoints within the 2400 second time of flight, indicating an efficiency not found by the pareto GA.

Figure 6 shows the statistical breakdown of the amount of time each target was seen. Most targets were seen
more than 30 seconds, and no target was seen less than 10 seconds. This contrasts nicely with the pareto-GA case,

Figure 3. Pareto GA–Trajectory for Member 103

Figure 4. Amount of Time Spent on Each Target–Pareto GA,
Member 103
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where two targets were seen less than
1 second. In general, this algorithm
produced excellent results and the GA
determined waypoints/path provided
excellent coverage of the targets while
keeping the acceleration goal at a
minimum.

Case 3: Non-Pareto GA, GA-
Determined Waypoints, Waypoint
Visitation Based upon Nearest
Neighbor

The Nearest Neighbor algorithm
produced the trajectory shown in
Figure 7. The dark/wide line is the
vehicle path and the light/thin lines
represent the field of view seen by the
seeker. As this figure shows, each
target was definitely seen for some
period of time, and the trajectory
shows the obvious point-to-point flight
dictated by the Nearest Neighbor
algorithm. One thing that is not so
obvious is that the SUAV actually
flew through each waypoint nearly
three times within the 2400 second
time of flight. This inherent efficiency
within the point-to-point algorithm
helped boost the average time each
target was seen by a nearly a factor of
three. In terms of performance in the
three goals, the SUAV saw 20 out of
20 targets an average of 63.447
seconds. The acceleration goal had a
value of 253.8274 G2·sec. The
average time spent looking at the
targets was better than either of the
GA-determined path cases (1 & 2), but
the acceleration goal was 45% higher
than for the non-pareto GA case.

Figure 8 shows the statistical
breakdown of the amount of time each
target was seen. Most targets were
seen more than 50 seconds, but there
were a couple of targets that were seen
less than 10 seconds, namely targets
15 and 18. In general though, this
algorithm produced excellent results
and the GA-determined waypoints
provided very good coverage of the targets.

Case 4: Comparison Case, Non-GA, Standard Polygon Boundary Reflection Algorithm (PBRA)
A sample PBRA trajectory is shown in Figure 9. The SUAV in this case saw 15 out of the 20 targets an average

of 12.936 seconds. The acceleration goal had a value of 160.9569 G2·sec. Ten random starts of this algorithm
produced an average of 15.07 targets seen an average of 15.05 seconds with an acceleration goal of 179.492 G2·sec.
This algorithm did not produce comparable results to the any of the GA-determined waypoint approaches, but it was

Figure 5. Non-Pareto GA, “Best” Trajectory

Figure 6. Amount of Time Spent on Each Target–Non-Pareto GA
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not expected that it would. The beauty
of the PBRA, however, is that it does
not require any information beyond the
boundary definition and provides a
degree of randomness in the trajectory
that could aid in survivability.

Case 5: Comparison Case, Non-GA,
Point-to-Point Local Optimum
Search

As expected, the local optimum
solution produces a trajectory that sees
every target and minimizes the number
of large-angle turns (see Figure 10).
The SUAV in this case saw 20 out of
the 20 targets an average of 18.981
seconds. The acceleration goal had a
value of 194.3620 G2·sec. The local
optimum solution really shows that the
best local optimum does not compare
very favorably with any GA-optimized
result. The average time each target
was seen was a full 25 seconds less
than the worst GA-derived solution.

Case 6: Comparison Case, Non-GA,
Point-to-Point Local Optimum
Search with Variable Length Legs

Figure 11 shows the trajectory for
this case. As expected, 20 out of 20
targets were seen, but the variable
length legs approach increases the
average time on target to 38.47
seconds. This is a substantial
improvement over using fixed-length
legs. The acceleration goal had a
value of 215.8509 G2·sec, an 11%
increase from the fixed-length leg
case, but the SUAV flew 42 legs
versus the 25 it flew for the fixed-
length leg case.

Case 7: Comparison Case, Non-GA,
Conventional Serpentine Path
Search

Figure 12 shows the trajectory for
the serpentine search path. Only 19 of
the 20 targets were seen, and these
targets were seen only 9.49 seconds on-average. The target not seen was missed because of its placement near one
of the turns. This conventional approach is substantially poorer than any of the GA or local optimum cases, but
compares favorably with the PBRA. As expected, from an energy perspective, the serpentine path is very efficient,
requiring the use of only 50.44 G2·sec of turning energy.

Figure 7. Nearest Neighbor Algorithm Trajectory

Figure 8. Amount of Time Spent on Each Target–
Nearest Neighbor Algorithm



American Institute of Aeronautics and Astronautics
10

V. Performance Summary
The following table summarizes

the results for each approach studied in
this research. It should be noted that
these results apply to the selected
target distribution only. For Case 1,
the pareto GA, the range of values
indicates the performance of the better
population members from the pareto-
optimal front. As the acceleration goal
shows, the most efficient approach in
terms of energy was the serpentine
path. This result is not surprising
since the turns required with this
approach are fewer than any other
approach (14 versus at least 25). The
second most efficient approach was
the non-pareto GA where the GA
determined both the waypoints and the
path. This result is somewhat
surprising because it was expected that
the PBRA would be more efficient
than any of the GA-based algorithms.
The PBRA algorithm inherently limits
the number of turns and purposely
flies a straight path until it absolutely
has to turn due to the boundary. The
fact that one of the GA runs found a
more energy efficient solution was
encouraging. In terms of average
viewing time of each target, run 3, the
Nearest Neighbor algorithm with GA-
determined waypoints, produced the
highest average viewing times. It must
be remembered that the waypoints
were revisited nearly 3 times for this
case within the 2400 second time of
flight, and even with the multiple
revisits, two of the targets were seen
less than 10 seconds. The non-pareto
GA (Case 2), actually had better
performance in terms of having all
targets seen more than 10 seconds
each. The non-pareto GA and the
Nearest Neighbor GA both exhibit one
similar feature in the trajectories,
namely, they have fewer sharp turns
(>90 deg) than the basic pareto GA
approach. The number of turns is
actually more in the Nearest Neighbor
GA case than in the pareto GA, yet the overall energy used in turning is comparable. This could be a worthwhile
feature that could be extracted from this research and used in future studies. The local optimum solution with fixed-
length legs (Case 5), though fairly energy efficient, did not produce an average time on each target that was
comparable to any of the GA solutions. Case 6, the local optimum with variable-length legs substantially improved
the average time-on-target with only an 11% increase in energy requirements. This feature could be worth further

Figure 9. PBRA Trajectory

Figure 10. Local Optimum Trajectory, Fixed Length Legs
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exploitation and research. The
serpentine path (Case 7) trajectory, while
extremely energy efficient, did not see
all the targets and had very poor
performance in terms of average viewing
time on those targets that it did see. As
all these runs show, there are many ways
to increase the average viewing time of
targets over the conventional serpentine
path. The PBRA algorithm saw the
targets an average of 5.5 seconds (58%)
longer than the serpentine path. Since
the average time on target was based on
all 20 targets instead of just “seen” 
targets, the targets seen by the PBRA
were seen a considerably longer time
(~20 seconds on average) than the 15.05
seconds shown in Table 1. These results
for the PBRA are encouraging given its
simplicity and the likelihood that it will
help enhance vehicle survivability
because of the somewhat random path it
takes through the target area.

VI. Conclusion
Both the Nearest Neighbor GA

approach and the non-pareto GA
approach worked well, and should be
further examined through research.
Also, the local optimum solution with
variable-length legs was better than
expected and should be further
examined. A common trajectory feature
of these more successful runs was the
low number of sharp turns. This feature
will be explored further in future
research. These algorithms should also
be examined against moving targets to
see how these approaches compare for a
more difficult target scenario. In terms
of problem set-up, the average time goal
could also be reconstructed so that each
target must be seen a minimum amount
of time, or perhaps a variance could be
measured to balance the time more
evenly across the targets.
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Figure 12. Serpentine Search Trajectory
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Table 1. Performance Comparison of Different Algorithms/Approaches
Run Number of Unique

Targets Seen
Average Time Each Target

Seen (sec)
Acceleration Goal (G2·sec)

Case 1: Pareto, GA Determined
Waypoints and Path

20 45 - 52.77 230 - 280

Case 2: Non-Pareto, GA
Determined Waypoints and Path

20 53.36 175.18

Case 3: Non-Pareto, GA
Determined Waypoints, Nearest

Neighbor

20 63.48 253.83

Case 4: PBRA (10 random runs) 15.07 15.05 179.49
Case 5: Non-GA, Local

Optimum with Fixed-Length
Legs

20 18.98 194.36

Case 6: Non-GA, Local
Optimum with Variable-Length

Legs

20 38.47 215.85

Case 7: Serpentine Path 19 9.49 50.44
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